Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Antioxidants (Basel) ; 13(3)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38539900

ABSTRACT

Progressive respiratory airway destruction due to unresolved inflammation induced by periodic infectious exacerbation episodes is a hallmark of cystic fibrosis (CF) lung pathology. To clear bacteria, neutrophils release high amounts of reactive oxygen species (ROS), which inflict collateral damage to the neighboring epithelial cells causing oxidative stress. A former genome-wide small interfering RNA (siRNA) screening in CF submucosal gland cells, instrumental for mucociliary clearance, proposed tumor necrosis factor receptor superfamily member 1B (TNFRSF1B; TNFR2) as a potential hit involved in oxidative stress susceptibility. Here, we demonstrate the relevance of TNFRSF1B transcript knock-down for epithelial cell protection under strong oxidative stress conditions. Moreover, a blockade of TNFR signaling through its ligand lymphotoxin-α (LTA), overexpressed in airway epithelial cells under oxidative stress conditions, using the anti-tumor necrosis factor (TNF) biologic etanercept significantly increased the viability of these cells from a toxic oxidizing agent. Furthermore, bioinformatic analyses considering our previous RNA interference (RNAi) screening output highlight the relevance of TNFRSF1B and of other genes within the TNF pathway leading to epithelial cell death. Thus, the inhibition of the LTα3-TNFR2 axis could represent a useful therapeutic strategy to protect the respiratory airway epithelial lining from the oxidative stress challenge because of recurrent infection/inflammation cycles faced by CF patients.

2.
Int J Hyg Environ Health ; 248: 114117, 2023 03.
Article in English | MEDLINE | ID: mdl-36708652

ABSTRACT

BACKGROUND: Inhalation of Legionella-containing aerosols generated by cooling towers (CT) and evaporative condensers (EC) where water risk management is not performed correctly has been linked to a high percentage of community outbreaks of Legionnaires' disease (LD). Likewise, microbiological and physicochemical characteristics of the water in these facilities have been associated with this bacterium. The main aim of this study was to assess the risk of Legionella colonization in CT and EC based on the data for microbiological and physicochemical water quality provided by the Environmental Health Department and Laboratory of the City Council of L'Hospitalet de Llobregat (Barcelona, Spain). METHODS: Legionella was analysed in 789 samples collected from 127 CT and EC in 46 companies in Catalonia from 2002 to 2019. A two-step logistic regression analysis was carried out to assess the risk of colonization by Legionella in the studied facilities according to the microbiological (aerobic heterotrophic bacteria) and physicochemical (pH, alkalinity, hardness, turbidity, conductivity, total iron and Langelier Index) water parameters. The optimal cut-off points for the water parameters predictive of Legionella contamination were defined as the values on the receiver operating characteristic (ROC) curve where sensitivity and specificity were jointly maximized. RESULTS: Legionella was isolated in 8.49% of the 789 analysed samples, 22.39% of which were heavily contaminated (with counts higher than 1.0 × 104 CFU/l). L. pneumophila was isolated in 82.09% of the samples, with 41.82% belonging to serogroup 1. Logistic regression analysis revealed that aerobic heterotrophic bacteria concentrations ≥6.90 × 102 CFU/ml [Odds ratios (OR) (95% CI) = 3.56 (1.39-9.43), p = 0.01], a pH ≥ 8.70 [OR (95% CI) = 3.60 (1.34-10.09), p = 0.01], and water hardness ≥5.72 × 102 mg/l [OR (95% CI) = 6.30 (2.34-18.56), p < 0.001] were each independently associated with a higher risk of CT and EC colonization by Legionella. CONCLUSIONS: The present study shows the importance of risk assessment for improving the control measures aimed at preventing or reducing Legionella populations in CT and EC, thus minimizing potential dangers for public health.


Subject(s)
Legionella pneumophila , Legionella , Legionnaires' Disease , Humans , Water Microbiology , Respiratory Aerosols and Droplets , Legionnaires' Disease/epidemiology , Legionnaires' Disease/microbiology
3.
Antioxidants (Basel) ; 10(12)2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34943039

ABSTRACT

Recurrent infection-inflammation cycles in cystic fibrosis (CF) patients generate a highly oxidative environment, leading to progressive destruction of the airway epithelia. The identification of novel modifier genes involved in oxidative stress susceptibility in the CF airways might contribute to devise new therapeutic approaches. We performed an unbiased genome-wide RNAi screen using a randomized siRNA library to identify oxidative stress modulators in CF airway epithelial cells. We monitored changes in cell viability after a lethal dose of hydrogen peroxide. Local similarity and protein-protein interaction network analyses uncovered siRNA target genes/pathways involved in oxidative stress. Further mining against public drug databases allowed identifying and validating commercially available drugs conferring oxidative stress resistance. Accordingly, a catalog of 167 siRNAs able to confer oxidative stress resistance in CF submucosal gland cells targeted 444 host genes and multiple circuitries involved in oxidative stress. The most significant processes were related to alternative splicing and cell communication, motility, and remodeling (impacting cilia structure/function, and cell guidance complexes). Other relevant pathways included DNA repair and PI3K/AKT/mTOR signaling. The mTOR inhibitor everolimus, the α1-adrenergic receptor antagonist doxazosin, and the Syk inhibitor fostamatinib significantly increased the viability of CF submucosal gland cells under strong oxidative stress pressure. Thus, novel therapeutic strategies to preserve airway cell integrity from the harsh oxidative milieu of CF airways could stem from a deep understanding of the complex consequences of oxidative stress at the molecular level, followed by a rational repurposing of existing "protective" drugs. This approach could also prove useful to other respiratory pathologies.

4.
Bio Protoc ; 11(10): e4032, 2021 May 20.
Article in English | MEDLINE | ID: mdl-34150939

ABSTRACT

The co-stimulatory molecule CD40 and its ligand CD40L play a key role in the regulation of immunological processes and are involved in the pathophysiology of autoimmune and inflammatory diseases. Inhibition of the CD40-CD40L axis is a promising therapy, and a number of strategies and techniques have been designed to hinder its functionality. Our group has broad experience in silencing CD40 using RNAi technology, and here we summarize protocols for the systemic administration of a specific anti-CD40 siRNA in different rodents models, in addition to the subsequent quantification of CD40 expression in murine kidneys by immunostaining. The use of RNAi technology with specific siRNAs to silence genes is becoming an essential method to investigate gene functions and is rapidly emerging as a therapeutic tool. Graphic abstract: CD40 siRNA mechanism.

5.
J Microbiol Methods ; 186: 106242, 2021 07.
Article in English | MEDLINE | ID: mdl-34019935

ABSTRACT

BACKGROUND: Legionella pneumophila (L. pneumophila) is responsible for 96% of Legionnaires' disease (LD) and 10% of all worldwide pneumonia cases. Legiolert™, a liquid culture method for most probable number (MPN) enumeration of L. pneumophila, was developed by IDEXX Laboratories. The method detects all serogroups of L. pneumophila in potable and non-potable water samples. OBJECTIVE: The goal of this study is to establish that Legiolert is a suitable alternative method to meet testing requirements in Spain for the enumeration of Legionella in water samples. METHODOLOGY: The laboratory analyzed 118 environmental water samples from the Barcelona region (56 potable and 62 non-potable) in parallel by the Standard method for detection and enumeration of Legionella (ISO 11731:1998) and by Legiolert. Comparison of the recovery of the alternative method (Legiolert) and the Standard was made using ISO 17994:2014 and McNemar's binomial test statistical methods. RESULTS: 44 samples were positive for Legionella (36 potable and 8 non-potable). Legiolert and the Standard method detected a similar percentage of positive samples, with Legiolert being slightly higher (31 vs 30%) and detecting higher concentrations of Legionella within the samples. ISO 17994:2014 analysis of the potable water samples found Legiolert was more sensitive than the Standard at detecting Legionella, even when complete Legionella species (L. spp.) results were considered for both methods. The two methods also demonstrated equivalent detection of L. spp. according to the McNemar's test. The comparison is significantly more in favor of Legiolert when only L. pneumophila results are considered. Each confirmation run with material extracted from positive Legiolert wells contained L. pneumophila, giving the method a specificity of 100%. Although statistical results for non-potable waters are not included because of the low number of samples, the two methods trended towards equivalence. CONCLUSIONS: Relative to the Standard method, Legiolert has a greater sensitivity and selectivity, and appears to have higher recovery for L. pneumophila, and equivalent recovery when L. spp. is included in the comparison. Legiolert also has high specificity. The procedural advantages of Legiolert allow laboratories to save on resources, costs, and time and consequently to test more frequently. In conclusion, the study finds IDEXX Legiolert a suitable alternative to ISO 11731:1998.


Subject(s)
Colony Count, Microbial/methods , Drinking Water/microbiology , Laboratories/standards , Legionella pneumophila/isolation & purification , Colony Count, Microbial/instrumentation , Colony Count, Microbial/standards , Humans , Legionella pneumophila/classification , Legionella pneumophila/genetics , Legionnaires' Disease/microbiology , Public Health , Reference Standards , Water Microbiology , Water Pollutants/analysis
6.
J Inflamm Res ; 13: 1057-1073, 2020.
Article in English | MEDLINE | ID: mdl-33293849

ABSTRACT

Since the Great Oxidation Event, about 2.4 billion years ago, the Earth is immersed in an oxidizing atmosphere. Thus, it has been proposed that excess oxygen, originally a waste product of photosynthetic cyanobacteria, induced oxidative stress and the production of reactive oxygen species (ROS), which have since acted as fundamental drivers of biologic evolution and eukaryogenesis. Indeed, throughout an organism's lifespan, ROS affect directly (as mutagens) or indirectly (as messengers and regulators) all structural and functional components of cells, and many aspects of cell biology. Whether left unchecked by protective antioxidant systems, excess ROS not only cause genomic mutations but also induce irreversible oxidative modification of proteins (protein oxidation and peroxidation), lipids and glycans (advanced lipoxidation and glycation end products), impairing their function and promoting disease or cell death. Conversely, low-level local ROS play an important role both as redox-signaling molecules in a wide spectrum of pathways involved in the maintenance of cellular homeostasis (MAPK/ERK, PTK/PTP, PI3K-AKT-mTOR), and regulating key transcription factors (NFκB/IκB, Nrf2/KEAP1, AP-1, p53, HIF-1). Consequently, ROS can shape a variety of cellular functions, including proliferation, differentiation, migration and apoptosis. In this review, we will give a brief overview of the relevance of ROS in both physiological and pathological processes, particularly inflammation and aging. In-depth knowledge of the molecular mechanisms of ROS actuation and their influence under steady-state and stressful conditions will pave the way for the development of novel therapeutic interventions. This will mitigate the harmful outcomes of ROS in the onset and progression of a variety of chronic inflammatory and age-related diseases.

7.
Int J Mol Sci ; 21(23)2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33297418

ABSTRACT

As aerobic organisms, we are continuously and throughout our lifetime subjected to an oxidizing atmosphere and, most often, to environmental threats. The lung is the internal organ most highly exposed to this milieu. Therefore, it has evolved to confront both oxidative stress induced by reactive oxygen species (ROS) and a variety of pollutants, pathogens, and allergens that promote inflammation and can harm the airways to different degrees. Indeed, an excess of ROS, generated intrinsically or from external sources, can imprint direct damage to key structural cell components (nucleic acids, sugars, lipids, and proteins) and indirectly perturb ROS-mediated signaling in lung epithelia, impairing its homeostasis. These early events complemented with efficient recognition of pathogen- or damage-associated recognition patterns by the airway resident cells alert the immune system, which mounts an inflammatory response to remove the hazards, including collateral dead cells and cellular debris, in an attempt to return to homeostatic conditions. Thus, any major or chronic dysregulation of the redox balance, the air-liquid interface, or defects in epithelial proteins impairing mucociliary clearance or other defense systems may lead to airway damage. Here, we review our understanding of the key role of oxidative stress and inflammation in respiratory pathology, and extensively report current and future trends in antioxidant and anti-inflammatory treatments focusing on the following major acute and chronic lung diseases: acute lung injury/respiratory distress syndrome, asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, and cystic fibrosis.


Subject(s)
Homeostasis , Oxidative Stress , Respiratory Mucosa/metabolism , Respiratory Tract Diseases/metabolism , Animals , Anti-Inflammatory Agents/therapeutic use , Humans , Respiratory Mucosa/pathology , Respiratory Tract Diseases/drug therapy , Respiratory Tract Diseases/pathology
8.
Planta Med ; 69(2): 177-8, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12624829

ABSTRACT

Seven diterpenes isolated of the latex of the Euphorbia obtusifolia were evaluated as inhibitors of the NADH oxidase activity in submitochondrial particles from bovine heart. Compound 2, 2,3,5,7,8,9,15-heptahydroxyjatropha-6(17),11-diene-14-one 8,9-diacetate 7-isobutyrate 2,3-bis(2-methylbutyrate), was the most potent inhibitor with an inhibitory concentration (IC 50 ) value of 5.1 +/- 0.2 microM. In the present study, some structure-activity trends are suggested for the inhibitory activity of these natural products on the mammalian mitochondrial respiratory chain.


Subject(s)
Diterpenes/pharmacology , Euphorbia , Mitochondria, Heart/drug effects , Multienzyme Complexes/antagonists & inhibitors , NADH, NADPH Oxidoreductases/antagonists & inhibitors , Phytotherapy , Animals , Cattle , Diterpenes/administration & dosage , Diterpenes/therapeutic use , Dose-Response Relationship, Drug , Humans , Inhibitory Concentration 50 , Latex/chemistry , Mitochondria, Heart/enzymology , Multienzyme Complexes/metabolism , NADH, NADPH Oxidoreductases/metabolism , Oxygen Consumption/drug effects , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...